The packing density (PD) in SC :-
           1 x (4/3) PI (R)3 / (a)3
i.e.      1/1 x 4/3 x PI/1 x [a /2]3 x 1/ (a)3
i.e.       PI / 6
i.e.      0.52

The percentage of void space in SC :-
           (1 - PD) x 100
i.e.      (1 - 0.52) x 100 = 48%

The packing density in BCC :-
           2 x (4/3) PI (R)3 / (a)3
i.e.      2/1 x 4/3 x PI/1 x [(square root of 3) x a /4]3 x 1/ (a)3
i.e.      (square root of 3) x (PI / 8)
i.e.      0.68.

The percentage of void space in BCC :-
           (1 - PD) x 100
i.e.      (1 - 0.68) x 100 = 32%

The packing density in FCC :-
           4 x (4/3) PI (R)3 / (a)3
i.e.      4/1 x 4/3 x PI/1 x [(square root of 2) x a /4]3 x 1/ (a)3
i.e.      PI / (3 x square root of 2)
i.e.      0.74.

The percentage of void space in FCC :-
           (1 - PD) x 100
i.e.      (1 - 0.74) x 100 = 26%

Hence the FCC structure possesses maximum packing density and minimum percentage of void space among the three crystal structures SC, BCC and FCC.

Density = n M / N (a)3

So, for SC, where n = 1,
Density = M / N (a)3

So, for BCC, where n = 2,
Density = 2M / N (a)3

So, for FCC, where n = 4,
Density = 4M / N (a)3